Thursday, August 2, 2007

Associative Memory

Content-addressable memory (CAM) is a special type of computer memory used in certain very high speed searching applications. It is also known as associative memory, associative storage, or associative array, although the last term is more often used for a programming data structure.

Unlike standard computer memory (random access memory or RAM) in which the user supplies a memory address and the RAM returns the data word stored at that address, a CAM is designed such that the user supplies a data word and the CAM searches its entire memory to see if that data word is stored anywhere in it. If the data word is found, the CAM returns a list of one or more storage addresses where the word was found (and in some architectures, it also returns the data word, or other associated pieces of data).

Answer to Meeras Doubt

http://www.cs.pitt.edu/~melhem/courses/1541/tutorial/chex.htm

Wednesday, August 1, 2007

Automatic Sequence Controlled Calculator (ASCC)

The IBM Automatic Sequence Controlled Calculator (ASCC), called the Mark I by Harvard University, was the first large-scale automatic digital computer in the USA. It is considered by some to be the first universal calculator.

The electromechanical ASCC was devised by Howard H. Aiken, created at IBM, shipped to Harvard in February 1944, and formally delivered there on August 7, 1944. The main advantage of the Mark I was that it was fully automatic—it didn't need any human intervention once it started. It was the first fully automatic computer to be completed. It was also very reliable, much more so than early electronic computers. It is considered to be "the beginning of the era of the modern computer" and "the real dawn of the computer age".

ASCC-Left Segment


The building elements of the ASCC were switches, relays, rotating shafts, and clutches. It was built using 765,000 components and hundreds of miles of wire, amounting to a size of 51 feet (16 m) in length, eight feet (2.4 m) in height, and two feet deep. It had a weight of about 10,000 pounds (4500 kg). The basic calculating units had to be synchronized mechanically, so they were run by a 50 foot (15 m) shaft driven by a five-horsepower (4 kW) electric motor.

ASCC-Right Segment


The Automatic Sequence Controlled Calculator (Harvard Mark I) was the first operating machine that could execute long computations automatically. A project conceived by Harvard University's Dr. Howard Aiken, the Mark I was built by IBM engineers in Endicott, N.Y. A steel frame 51 feet long and eight feet high held the calculator, which consisted of an interlocking panel of small gears, counters, switches and control circuits, all only a few inches in depth. The ASSC used 500 miles of wire with three million connections, 3,500 multipole relays with 35,000 contacts, 2,225 counters, 1,464 tenpole switches and tiers of 72 adding machines, each with 23 significant numbers. It was the industry's largest electromechanical calculator.

The Mark I could store 72 numbers, each 23 decimal digits long. It could do three additions or subtractions in a second. A multiplication took six seconds, a division took 15.3 seconds, and a logarithm or a trigonometric function took over one minute.

Details of Input/Output and Control


The Mark I read its instructions from a 24 channel punched paper tape and executed the current instruction and then read in the next one. It had no conditional branch instruction. This meant that complex programs had to be physically long. A loop was accomplished by joining the end of the paper tape containing the program back to the beginning of the tape (literally creating a loop). This separation of data and instructions is known as the Harvard architecture.